CC42 - Real Analysis

GENERAL

SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CC42	42 SEMESTER		D
COURSE TITLE	REAL ANALYSIS			
INDEPENDENT TEACHING ACTIVITIES		NG IES	WEEKLY TEACHING HOURS	ECTS
	Lectures		5	7
COURSE TYPE	Scientific Field			
PREREQUISITE COURSES	Infinitesimal Calculus I-II			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

With this course students will be introduced to the topology of metric spaces. Upon completion of the course, students:

- Will be familiar with the concepts of open and closed sets
- They will recognize the basic topological properties of metric spaces
- They will be able to use the nested sets and Baire theorems.
- They will have an understanding of the concept of topological space.

General Competencies

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Working independently for the enhancement of their self-esteem.
- Creation of new research ideas.
- Production of free, creative and inductive thinking, which is based on mathematical processes.

CONTENT OF THE COURSE

Euclidean spaces. Open and closed sets. Interior, exterior, boundary, closure of a set. Metric spaces, examples. Equivalent metrics, convergence and continuity. Complete metric spaces, Cauchy sequences, complete metric spaces. Nested sets theorem, Baire's theorem. Compactness and connectedness, properties and examples. Introduction to topological spaces.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.				
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Use of e-class. Communication through and e-mails.	face-to-face discussions			
TEACHING ORGANIZATION	Activity	Semester Workload			
	Lectures	65 hours			
	Individual Study	110 hours			
	Course Total (25 hours per ECTS)	175 hours			
STUDENT EVALUATION	Written final examination 10	00%.			

RECOMMENDED BIBLIOGRAPHY

- 1. Topology, P. Tsamatos. Tziola Publ. 2016.
- 2. Topology of Metric Spaces, Th. Kyventidis. Ziti Publ. 2009.
- 3. Introduction to Topology, Ch. Karioffilis and Ch. Konstadilaki. Kyriakidis Publ. 2017.