CE85 - Operator Theory

GENERAL

SCHOOL	EXACT SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	CE85	85 SEMESTER		Н	
COURSE TITLE	OPERATOR THEORY				
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	ECTS	
	Lectures 4		6		
COURSE TYPE	Scientific Field				
PREREQUISITE COURSES	Functional Analysis Topology				
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)	http://eclass.uowm.gr/				

LEARNING OUTCOMES

Learning Outcomes

Upon successful completion of the course, the student will be able to:

- understand the concept of bounded/unbounded operator on a normed space, as well as the notion of operator norm,
- prove that an operator is bounded and compute or estimate its norm,
- know various categories of operators in Hilbert spaces (self-adjoint, positive, projection, etc.) through examples but also through theoretical characterizations of an algebraic and geometric nature,

- distinguish between the different categories of operators, either in general or in specific spaces,
- know the relationships between (orthogonal) projections (orthogonality, order, commutativity, pointwise convergence of sequences) and be able to use these in solving problems,
- know the concept of finite rank operator and compact operator and the relationship between these categories as well as their various characterizations,
- understand the Spectral Theorem for compact normal operators in Hilbert spaces and the diagonalization of such operators, as well as the general form (polar representation) of compact operators in Hilbert spaces,
- apply the spectral theory of compact operators to problem solving.

General Competencies

- Search, analysis and synthesis of data and information, using the necessary technologies.
- Adapting to new situations.
- Working in an interdisciplinary environment.
- Independent work.
- Team work.
- Generation of new research ideas.
- Promotion of free, creative and inductive thinking.

CONTENT OF THE COURSE

Euclidean spaces, inner products in infinite-dimensional spaces. Completeness, Hilbert spaces, basic properties, Closed operators, Examples, the conjugate operator, classes of operators, projections. Operators of finite order, compact operators, integral operators, diagonalization of operators, the spectral theorem for compact normal operators, Applications.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	e-Lectures. Use of e-class. Communication through and e-mails.	face-to-face discussions		
TEACHING ORGANIZATION	Activity	Semester Workload		
	Lectures	40 hours		

	Teaching of exercises	20 hours	
	Solving of selected exercises	40 hours	
	Individual Study	50 hours	
	Course Total (25 hours per ECTS)	150 hours	
STUDENT EVALUATION	Written final examination (100%) which includes: -Theory, -Exercises.		

RECOMMENDED BIBLIOGRAPHY

- 1. Karanasios S., Theory of Operators & Applications, Publications Tsotras, 2nd ed., 2017. (Greek)
- 2. Katavolos A., Introduction to Operator Theory, Publications Symmetry, 2008. (Greek)
- 3. Ifantis E.K., Theory of Operators, Publications Stamoulis, 2004. (Greek)
- 4. Gohberg I., Goldberg S., Basic Operator Theory, Birkhäuser, 2001.
- 5. Kehe Zhu, Operator theory in Function Spaces, American Mathematical Society, 2nd edition, 2007.
- 6. Y. Abramovic, C. Aliprantis, An Invitation to Operator Theory, American Mathematical Society, 2002.
- 7. R.G. Douglas, Banach Algebra Techniques in Operator Theory, Springer- Verlag, 1998.