CE84 - Mathematical Logic

GENERAL

SCHOOL	EXACT SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	CE84	CE84 SEMESTER		Н	
COURSE TITLE	MATHEMATICAL LOGIC				
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	ECTS		
	Lectures		4	6	
COURSE TYPE	Scientific Field				
PREREQUISITE COURSES	Set Theory				
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)	http://eclass.uowm.gr/				

LEARNING OUTCOMES

Learning Outcomes

With the successful attendance of the course the students:

- will learn the basic language of Propositional Calculus like propositions and connections,
- will be able to check the truth values of a proposition, the tautology/contradiction and the equivalence of propositions,
- will learn the regular forms,
- will study proofs in the view of typical systems,

- will understand basic theorems of Compactness, Validity and Completeness in Propositional Logic,
- will learn the meaning of Boole Algebra and its applications,
- will be able to use the language of Categorical Logic,
- will understand basic theorems of Compactness, Validity and Completeness in Categorical Logic.

General Competencies

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Working independently for the enhancement of their self-esteem.
- Creation of new research ideas.
- Production of free, creative and inductive thinking, which is based on mathematical processes.

CONTENT OF THE COURSE

- The language of Propositional Logic, the truth values of propositions, corresponding truth-matrices, tautologies, contradictions, logic equivalence of propositions.
- Adequacy of logic connections, regular forms.
- Systems of typical proofs.
- Logic circuits, Algebra Boole.
- The language of Categorical Logic.
- The theorems of Compactness, Validity and Completeness in Categorical Logic.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.				
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Use of e-class. Communication through face-to-face discussions and e-mails.				
TEACHING ORGANIZATION	Activity	Semester Workload			
	Lectures	52 hours			
	Individual Study	98 hours			
	Course Total (25 hours per ECTS)	150 hours			
STUDENT	Written final examination 100%.				

EVALUATION

RECOMMENDED BIBLIOGRAPHY

- 1. Margaris A. I., Introduction to Mathematical Logic, Publications Tziola, 2017 (Greek).
- 2. Tzouvaras Ath., Elements of Mathematical Logic, Publications Ziti, 1998 (Greek).
- 3. Georgiou D., Iliadis S., Set Theory, second edition, Publications Tziola, 2017 (Greek).
- 4. Cornelia Kalfa, Axiomatic Set Theory, Zetis Publications, 1990.
- 5. Enderton Herbert B., A Mathematical introduction to Logic, University Publications Crete, 2013 (Greek).