CE83 - Statistics II

GENERAL

SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CE83	CE83 SEMESTER H		Н
COURSE TITLE	STATISTICS II			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	ECTS
	Lectures		4	6
COURSE TYPE	Scientific Field			
PREREQUISITE COURSES	Statistics I			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

With this course, the students will be able to:

- study theoretical and applied statistical problems,
- handle several Statistical Functions for parameter estimation,
- delve into the theoretical background of hypothesis testing,
- apply the fundamental Naymann-Pearson lemma for the configuration of hypothesis tests,
- consolidate the theoretical framework on which all statistical methodologies and techniques are established.

General Competencies

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Application of knowledge in practice.
- Decision making.

CONTENT OF THE COURSE

Estimation: Unbiased, efficient and consistent estimators. Exponential distribution family. Search for minimum variance estimators with Rao-Blackwell and Cramer-Rao methods. Estimation methods (maximum likelihood, moment method, Minimax and Bayes). Confidence Interval parameter estimates. Hypothesis testing: The fundamental Naymann-Pearson lemma. Simple and complex hypothesis testing, generalized likelihood ratio test.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Powerpoint presentations. Use of e-class. Communication through face-to-face discussions via e-mails.			
TEACHING ORGANIZATION	Activity	Semester Workload		
	Lectures	52 hours		
	Projects	26 hours		
	Individual Study	72 hours		
	Course Total (25 hours per ECTS)	150 hours		
STUDENT EVALUATION	Projects 20%. Written final examination 80	0%.		

RECOMMENDED BIBLIOGRAPHY

- 1. Iliopoulos G., Basic Methods of Parameter Estimation, Ath. Stamoulis Publications, 2006 (Greek).
- 2. Kourouklis S., Parametric statistical inference issues, Hellenic Academic EBooks-"Kallipos" repository, 2016 (Greek).

- 3. Papaioanou T. and Ferentinos K., Mathematical Statistics, Ath. Stamoulis Publications, 2000 (Greek).
- 4. Kolyva-Mahera F., Mathematical Statistics-Estimation, Ziti publications, 1998 (in Greek).
- 5. Kolyva-Mahera F. and Hatzopoulos S., Mathematical Statistics-Estimation, Hellenic Academic EBooks- "Kallipos" repository, 2016 (in Greek).
- 6. Rao, C. R. (2008). Linear Statistical Inference and its Applications, 2nd edition. Wiley Series on Probability and Statistics.
- 7. Rice, J. A.(1994). Mathematical Statistics and Data Analysis, 2nd edition. Duxbury Press.
- 8. Roussas, G. (2003). An Introduction to Probability and Statistical Inference. Academic Press. An imprint of Elsevier Science.