CE82 - Queuing Systems

GENERAL

SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CE82	CE82 SEMESTER H		Н
COURSE TITLE	QUEUING SYSTEMS			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	ECTS
	Lectures		4	6
COURSE TYPE	Scientific Field			
PREREQUISITE COURSES	-			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

With this course, the students will be able to:

- use Markov processes in queuing system modeling,
- apply Little's results,
- recognize and apply basic queuing system models,
- employ queuing system models for optimal decision making.

General Competencies

• Search for, analysis and synthesis of data and information, with the use of the

necessary technology.

- Application of knowledge in practice.
- Decision making.
- Production of free, creative and inductive thinking for optimal decision making.

CONTENT OF THE COURSE

Description of queuing systems, basic notions and general results. Simple Markov systems. M/M/1 system: System states, waiting time, busy periods, departure process. Other Markov Systems: M/M/m/k, M/M/ ∞/∞ , Erlang systems, bulk queues. M/G/1 system: system states, waiting time, busy period. Applications for optimal decision making.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Powerpoint presentations. Use of e-class. Communication through face-to-face discussions via e-mails.			
TEACHING ORGANIZATION	Activity	Semester Workload		
	Lectures	52 hours		
	Projects	26 hours		
	Individual Study	72 hours		
	Course Total (25 hours per ECTS)	150 hours		
STUDENT EVALUATION	Projects 20%. Written final examination 80	0%.		

RECOMMENDED BIBLIOGRAPHY

- 1. Fakinos D., Stochastic Models in Operations Research: Theory and Applications, Symmetria, 2007 (Greek).
- 2. Hillier F. S. & Lieberman G. J. Introduction to operations research (7th ed.). McGraw-Hill, 2001.
- 3. Stafylopatis A.-G. Performance analysis of computational systems, Hellenic Academic Ebooks- "Kallipos" repository, 2016 (Greek).

4. Fakinos D., Queuing systems, Symmetria, 2008 (Greek).