CE813 - Celestial Mechanics

GENERAL

SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CE813 SEMESTER		Н	
COURSE TITLE	CELESTIAL MECHANICS			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	ECTS
	Lectures		4	6
COURSE TYPE	General Knowledge			
PREREQUISITE COURSES	-			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

With the completion of the learning process, the students will be able to know:

- the relationships that govern the central motion of celestial bodies,
- the relationships that govern the elliptical, parabolic and semi-parabolic orbits of celestial bodies,
- Newton's Law of Universal Gravitation and Kepler's Laws,
- the two-body problem, the N-body problem as well as the limited three-body problem,
- the Virial Theorem.

General Competencies

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Decision making.
- Production of free, creative and inductive thinking.

CONTENT OF THE COURSE

The subject of this course is the physical laws on which the movements of celestial bodies and their orbits are based, examining their kinematics and dynamics.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.				
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	e-Lectures. Use of e-class. Communication through face-to-face discussions and e-mails.				
TEACHING ORGANIZATION	Activity	Semester Workload			
	Lectures	52 hours			
	Projects	42 hours			
	Individual Study	56 hours			
	Course Total (25 hours per ECTS)	150 hours			
STUDENT EVALUATION	Projects 10%. Progress-Exam 20%. Written final examination 70	0%.			

RECOMMENDED BIBLIOGRAPHY

- 1. Celestial Mechanics and Astrodynamics: Theory and practice, Pini Gurfil P. Kenneth Seidelmann, Springer Publications.
- 2. Dynamical Astronomy Courses (Notes), Th.K. Papagiannopoulos, Athens 1997. (Greek)

3. Recent Advances in Celestial and Space Mechanics, Bernard Bonnard, Monique Chyba, Springer Publications.