CE72 - Numerical Solving of Differential Equations II

GENERAL

SCHOOL	SCIENCE			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CE72	CE72 SEMESTER		G
COURSE TITLE	NUMERICAL SOLVING OF DIFFERENTIAL EQUATIONS II			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	ECTS
	Lectures		4	6
COURSE TYPE	Scientific Field			
PREREQUISITE COURSES	Numerical Solving of Differential Equations I			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

After successful completion of the course, the students will have acquired a very good knowledge in the subject of numerical solving of differential equations. They will have known the current trends in research in this subject.

General Competencies

• Introduction to scientific research

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Decision making.
- Production of free, creative and inductive thinking.

CONTENT OF THE COURSE

With this course students are introduced to scientific research. Numerical Solving of Differential Equations. They will study and present journal articles and write their own small project.

The course contents are Runge-Kutta, Runge-Kutta-Nystrom, Partitioned Runge-Kutta methods. Butcher's theory: class conditions. trees, construction methods. Stability of methods.

Methods for solving problems with specific properties of the solution: exponentially and trigonometrically fitted methods, methods with minimum phase lag, with minimum magnification error.

Two-step hybrid methods, second derivative methods.

Implementation with MATLAB.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Software MATLAB. e-Lectures. Use of e-class.			
TEACHING ORGANIZATION	Activity	Semester Workload		
	Lectures	52 hours		
	Programming Tasks in MATLAB	26 hours		
	Individual Study	47 hours		
	Course Total (25 hours per ECTS)	125 hours		
STUDENT EVALUATION	Project 50%. Written final examination 50%.			

RECOMMENDED BIBLIOGRAPHY

- Z. Kalogiratou, Th. Monovasilis, Numerical Integration of Differential Equations, Kallipos Open Academic Editions, 2024. <u>https://dx.doi.org/10.57713/kallipos-441</u>. (Greek)
- 2. M. N. Vrachatis, Numerical Analysis: Ordinary Differential Equations, Kleidarithmos Pub. 2012 (Greek)
- 3. G.D. Akrivis, A.B.Dougalis, Numerical methods for Ordinary Differential Equations, Crete University Publications, 2015.
- 4. J. Buthcer, Numerical Methods for Ordinary Differential Equations. Wiley & Sons Publications, 2016.
- 5. J.R. Dormand, Numerical Methods for Differential Equations: A computational approach. CRC Press, 1996, (ebook 2017).