CE714 - Astronomy II

GENERAL

SCHOOL	EXACT SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	CE714		SEMESTER	G	
COURSE TITLE	ASTRONOMY II				
INDEPENDENT TEACHING ACTIVITIES		NG IES	WEEKLY TEACHING HOURS	ECTS	
	Lectures		4	6	
COURSE TYPE	General Knowledge				
PREREQUISITE COURSES	Astronomy I				
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)	http://eclass.uowm.gr/				

LEARNING OUTCOMES

Learning Outcomes

Upon successful completion of the course the students will be able to know:

- the basic principles governing astronomical observations and the operating principles of telescopes (optical, infrared, ultraviolet, X-rays, radio),
- the sources of astronomical information and observable quantities,
- the effect of the Earth's atmosphere on observations (absorption and disturbance) as well as the ways to deal with them,
- the methods of spectroscopic analysis of radiation and the relevant instruments (spectrographs, filters, etc.),

- the polarization of radiation,
- the detection of particles (neutrinos, cosmic rays, particles in interplanetary space) and gravitational radiation,
- the physical processes that shape the phenomena in our own and other galaxies as well as the study of the evolution of the large-scale structures of the universe and the universe as a whole,
- galaxy clusters and superclusters.

General Competencies

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Decision making.
- Production of free, creative and inductive thinking.

CONTENT OF THE COURSE

<u>Part A:</u> Astronomical observation, Effect of atmosphere, Telescopes (Optical, Radio, Infrared, X-ray), Radiation detection methods, Charge transport systems, CCD camera, Spectral analysis of radiation, Polarization of radiation, Cosmic radiation. <u>Part B:</u> Star Clusters and Stellar Evolution, Dynamical Evolution of Star Clusters, Galaxy Clusters-Large Structures, Variable Stars, Binary Star Systems, Interstellar Matter, Matter Infall and Active Galaxies.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.					
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	e-Lectures. Use of e-class. Communication through face-to-face discussions and e-mails.					
TEACHING ORGANIZATION	Activity	Semester Workload				
	Lectures	52 hours				
	Projects	42 hours				
	Individual Study	56 hours				
	Course Total (25 hours per ECTS)	150 hours				
STUDENT	Projects 10%.					

EVALUATION

Progress-Exam 20%. Written final examination 70%.

RECOMMENDED BIBLIOGRAPHY

- 1. Galactic and Extragalactic Astrophysics, N. Alexandros, K. Alyssandrakis, Greek Academic Electronic Books and Aids.
- 2. Observational Astrophysics, K. Alyssandrakis, Greek Academic Electronic Books and Aids.
- 3. Astrophysics II course notes, A. Mastichiadis, M. Kontizas. (Greek)
- 4. Observational Astronomy, S. Avgoloupis, I. Seiradakis, D. Tsampouras Publications & Co. OE. (Greek)