CE71 - Mathematical Physics

GENERAL

SCHOOL	EXACT SCIENCES		
DEPARTMENT	MATHEMATICS		
LEVEL OF STUDIES	UNDERGRADUATE		
COURSE CODE	CE71	SEMESTER	G
COURSE TITLE	MATHEMATICAL PHYSICS		
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	ECTS
	Lectures	4	6
COURSE TYPE	Scientific Field		
PREREQUISITE COURSES	-		
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English		
THE COURSE IS OFFERED	YES		
TO ERASINOS STODENTS			

LEARNING OUTCOMES

Learning Outcomes

The students who successfully complete this course will be able to:

- understand basic mathematical theories and tools that are used in the study of differential equations in various branches of physics,
- know modern-day techniques of symbolic computation to analytical approaches of physical problems,
- handle problems with new data (various physical states, boundary conditions, etc.),
- synthesize or find solution methods in new physical applications.

General Competencies

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Decision making.
- Production of free, creative and inductive thinking.

CONTENT OF THE COURSE

Basic introductory concepts in programming with symbolic programming languages. Basic operations and commands, functions, integrals, lists, diagrams. Introduction to Complex Analysis. Vector Spaces, Hilbert Spaces, Operators, Integral Transformations. Special Functions of Mathematics and Physics (Gamma function, Theta function, Zeta function). Differential Equations and their solution with a computer. Non-homogeneous Differential Equations. Green's method. Applications in Physics.

TEACHING METHOD	In the classroom.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Software Mathematica. e-Lectures. Use of e-class. Communication through face-to-face discussions and e-mails.			
TEACHING ORGANIZATION	Activity	Semester Workload		
	Lectures	52 hours		
	Projects	25 hours		
	Individual Study	73 hours		
	Course Total (25 hours per ECTS)	150 hours		
STUDENT EVALUATION	Projects 10%. Progress-exam 20%. Written final examination 76	0%.		

TEACHING AND LEARNING METHODS - EVALUATION

RECOMMENDED BIBLIOGRAPHY

- 1. Vergados J., Mathematical Methods of Physics, Vol. I, Crete University Press, 2004. (Greek)
- 2. Chow T., Mathematical Methods for Physicists: A concise introduction, Kleidarithmos Publications, 2018. (Greek)
- 3. Mathematical Methods of Physics, Volume A, Complex Functions, Fourier Analysis, S. Masen, M. Grypaios, Charalambos Publications Nik. Aivazis. (Greek)