CE67 - Measure Theory

GENERAL

SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CE67 SEMESTER		F	
COURSE TITLE	MEASURE THEORY			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	ECTS
	Lectures		4	5
COURSE TYPE	Scientific Field			
PREREQUISITE COURSES	Infinite Calculus I-II-III-IV Real Analysis			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

With the successful attendance of the course the students:

- will be familiar with the notion of measure and its basic properties,
- will be able to characterize basic sets as measurable or non measurable,
- will be familiar with the notion of measurable function,
- will understand the Lebesgue integral and will be able to compute it through a direct integration or the Riemann integral,
- will learn the basic properties of the spaces L_p .

General Competencies

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Working independently for the enhancement of their self-esteem.
- Production of free, creative and inductive thinking, which is based on mathematical processes.

CONTENT OF THE COURSE

- Algebra and σ -Algebra, measure (definition, properties, completion).
- Outer measures, Lebesgue measure, measurable and non measurable sets, Lebesgue measure and transformations, the Cantor set.
- Measurable functions and operations between them.
- Integral functions, Luzin Theorem, criteria of integration, comparison with Riemann integral.
- Spaces with measures. Tonelli and Fubini Theorems.
- Riesz Representation Theorem.
- Spaces L_p, (definition and properties).

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Use of e-class. Communication through e-mails.			
TEACHING ORGANIZATION	Activity	Semester Workload		
	Lectures	52 hours		
	Individual Study	73 hours		
	Course Total (25 hours per ECTS)	125 hours		
STUDENT EVALUATION	Written final examination 10	00%.		

RECOMMENDED BIBLIOGRAPHY

1. Measure Theory, Koumoullis G. Negrepontis S., Publications Symmetria, 2005 (Greek).

- 2. Real Analysis, Xenikakis P., Publications Ziti, 1996 (Greek).
- 3. Introduction to Real Analysis, Betsakos D., Kyriakidi Press 2016 (Greek).