CE66 - Astronomy I

GENERAL

SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CE66		SEMESTER	F
COURSE TITLE	ASTRONOMY I			
INDEPENDENT TEACHING ACTIVITIES		NG IES	WEEKLY TEACHING HOURS	ECTS
	Lectures		4	5
COURSE TYPE	General Knowledge			
PREREQUISITE COURSES	-			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

With the successful completion of the course the students will be able to:

- know the basic tools, physical quantities as well as standard magnitude classes of astronomy,
- know the radiation mechanism of celestrial bodies,
- understand the basic physics of the Sun,
- know the stellar structure, evolution and fate of stars,
- know basic concepts of astronomy such as the movements of the Earth, spherical trigonometry, time, calendars, etc.

- study problems of Celestial Mechanics such as: Newtonian force fields, problem of two, three and N bodies,
- know how the Lagrange-Hamilton theory is applied to the problems of Celestial Mechanics.

General Competencies

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Decision making.
- Production of free, creative and inductive thinking.

CONTENT OF THE COURSE

Basic concepts of Astronomy. Movements of the Earth-planets. Astronomical coordinate systems, Stellar magnitudes and distances. Elements of Spherical Trigonometry. Time (counting and calendars). Solar system. Kepler's Laws, N-body Problems in Dynamical Astronomy and especially in Celestial Mechanics. Problems of Dynamical Astronomy. Final stages: white dwarfs, neutron stars and black holes. Overview of the Sun. Solar system. Variable and idiosyncratic stars. Star groups and clusters. Interstellar matter. Our galaxy. The other galaxies. Cosmology.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.				
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	e-Lectures. Use of e-class. Communication through and e-mails.	face-to-face discussions			
TEACHING ORGANIZATION	Activity	Semester Workload			
	Lectures	52 hours			
	Projects	42 hours			
	Individual Study	31 hours			
	Course Total (25 hours per ECTS)	125 hours			
STUDENT EVALUATION	Projects 10%. Progress-exam 20%. Written final examination 7	0%.			

RECOMMENDED BIBLIOGRAPHY

- 1. The universe that I loved, S. Theodosiou, Em. Danezis, Diavlos Publications. (Greek)
- 2. Introduction to modern astronomy, Ch. Varvoglis, I. Seiradakis, Agis-Savvas Gartaganis Publications. (Greek)
- 3. Astrophysics, Volumes I and II, F. Shu, Foundation for Technology and Research University Press of Crete. (Greek)