CE64 - Data Structures

GENERAL

SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CE64 SEMESTER		F	
COURSE TITLE	DATA STRUCTURES			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	ECTS
	Lectures		4	5
COURSE TYPE	Skills Development			
PREREQUISITE COURSES	-			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

When the student successfully completes the course he will be able to:

- describe the Data Structures (D.D.) that he/she uses,
- assess the possibilities (advantages-limitations) of a specific D.D.,
- examine the respective problem in relation to the available D.D.,
- plan the appropriate D.D. in each case,
- create-implement the selected D.D. in C programming language,
- compare and evaluate the performance of D.D.

General Competencies

- Search, analysis and synthesis of data and information, using the necessary technologies.
- Adapting to new situations.
- Making decisions.
- Independent work.
- Team work.
- Criticism and self-criticism.
- Promotion of free, creative and inductive thinking.

CONTENT OF THE COURSE

Introduction to Data Structures Necessity-Usefulness.

The table structure. Evaluation of the array structure.

 \Box The structure of the Stack (Static and dynamic).

□ The structure of the Queue (Static and dynamic).

The structure of the Priority List and Queue.

□ The Linked List structure single & double.

□ The structure of the Tree. Binary Search Tree.

 \Box The structure of the red-black Tree. 2-3-4 Tree.

 \Box The structure of the Hash Table.

 \Box The Heap structure.

 \Box The structure of the Scripture.

□ The classification algorithms.

Recap and compare structures.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom and lab.				
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Learning process support through the Moodle electronic platform. Laboratory training.				
TEACHING ORGANIZATION	Activity	Semester Workload			
	Lectures	39 hours			
	Individual Study	60 hours			
	Laboratory Exercise	26 hours			
	Course Total (25 hours per ECTS)	125 hours			

	For the successful examination of the course, the student must be successfully examined independently			
	in both parts of the course, theory and laboratory. The evaluation in the theoretical part results from:			
	1. 35% the performance in individual assignments-			
	online tests with multiple choice questions through			
	the course page will be graded,			
	2.65% of the final exams of the course with a			
	comparative evaluation of theory elements.			
	The assessment in the laboratory part results in:			
	1. active participation during the student's presence			
	and work in the laboratory by 30%,			
	2. his/her final exam by 70%.			
	The overall grade of the course is the weighted average			
	of 60% the grade of the theoretical part and 40% of the			
	laboratory.			

RECOMMENDED BIBLIOGRAPHY

- 1. Data Structures & Algorithms in Java, Lafore Robert EDITIONS CH. GKIOURDA & Co EE. (Greek)
- 2. Data structures, algorithms and C++ applications, Sahnii Sartaj PUBLICATIONS A. TZIOLA & SONS S.A. (Greek)
- 3. DATA STRUCTURES, GEORGAKOPOULOS G.F. TECHNOLOGY & RESEARCH INSTITUTE PUBLICATIONS UNIVERSITY PUBLICATIONS OF CRETE. (Greek)
- 4. Data structures & file organizations Ch. Koilias Publications of New Technologies. (Greek)
- 5. Data structures, Bozanis Panagiotis D. EDITIONS A. TZIOLA & SONS S.A. (Greek)