CE58 - Discrete Mathematics

GENERAL

SCHOOL	SCIENC	TEC			
	SCIENCES				
DEPARTMENT	MATHEMATICS				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	CE58		SEMESTER	E	
COURSE TITLE	DISCRETE MATHEMATICS				
INDEPENDENT 7 A	TEACHING CTIVITIES		WEEKLY TEACHING HOURS	ECTS	
	Lectures		4	5	
COURSE TYPE	Scientific Field				
PREREQUISITE COURSES	-				
LANGUAGE OF TEACHING	Greek/English				
AND EXAMINATIONS	-				
THE COURSE IS OFFERED	YES				
TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)	http://eclass.uowm.gr/				

LEARNING OUTCOMES

Learning Outcomes

Upon successful completion of the course, the students will be able to:

- compose mathematical arguments using mathematical logic,
- use evidential procedures, such as that of mathematical induction,
- apply combinatorial analysis to solve enumeration problems,
- know the concept of graphs and use them in simplifying and solving complex problems.
- know all the basic families of graphs and their properties.

General Competencies

- Search, analysis and synthesis of data and information, using the necessary technologies.
- Adapting to new situations, making decisions.
- Work in a team.
- Promotion of free, creative and inductive thinking.

CONTENT OF THE COURSE

Sets and operations. Propositional Logic and equivalences. Proof methods (mathematical

induction) and proof strategy.

Relations and properties. Equivalence relation and classes, partial ordering relation.

Enumeration. Binomial Coefficients, Generator Functions, Combinations, permutations. Inclusion-Exclusion Principle.

Graphs and terminology. Graph representation. Subgraphs and isomorphisms. Connectivity. Trees. Bipartite graphs. Matching in bipartite graphs. Planar graphs. Maximum matches. Euler and Hamiltonian paths and circuits and graphs. Theorems of Kirchhoff, Dirac, Menger.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.					
USE OF INFORMATION	Use of e-class.					
AND COMMUNICATIONS	Communication through face-to-face discussions					
TECHNOLOGY	and e-mails.					
TEACHING						
ORGANIZATION	Activity	Semester				
	Activity	Workload				
	Lectures	52 hours				
	Individual Study	73 hours				
	Course Total (25 hours per ECTS)	125 hours				
STUDENT	Optional projects during the whole semester, with					
EVALUATION	presentations. (bonus to the final grading)					
	Written final examination 100%.					

RECOMMENDED BIBLIOGRAPHY

- 1. Discrete Mathematics, C.Athanasiadis, Publications Efaltirio, 2023. (Greek)
- 2. Discrete Mathematics, Kolountzakis M., Papachristodoulos C., Kallipos. (Greek)
- 3. Discrete Mathematics and their applications., Kenneth H. Rosen, 8th edition, Tziola Publications, 2018. (Greek)
- 4. Discrete Mathematics and their Applications, Susana S. Epp, Publications Kleidarithmos, 2010. (Greek)