CE56 - Fourier Analysis

GENERAL

SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CE56	SEMESTER		Е
COURSE TITLE	FOURIER ANALYSIS			
INDEPENDENT TEACHING ACTIVITIES		NG IES	WEEKLY TEACHING HOURS	ECTS
	Lectures		4	5
COURSE TYPE	Scientific Field			
PREREQUISITE COURSES	-			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

Upon successful completion of the course, the students will be able to:

- know the measure and the Lebesgue integral,
- have understood trigonometric polynomials,
- recognize Fourier series and apply the convergence criteria of their partial sums,
- solve Sturm-Liouville problems using integral calculus,
- know the integral transforms (Laplace and Fourier) and use them in solving differential and integral equations.

General Competencies

- Search, analysis and synthesis of data and information, using the necessary technologies.
- Adapting to new situations, making decisions.
- Work in a team.
- Promotion of free, creative and inductive thinking.

CONTENT OF THE COURSE

Calculus of variations: Euler's differential equation. Problems of variations in conditions. Hamilton's principle. Lagrange's equations. Sturm-Liouville problems. Rayleigh-Ritz method. Laplace transformation: Properties- Inverse transformation-Applications to ordinary differential equations- Applications to partial differential equations. Fourier analysis: Orthogonal functions-Fourier series-Fourier integrals. Fourier transformation-Applications to partial differential equations. Bessel's functions-Legendre's functions. Integral Equations: Connection to Differential Equations.

TEACHING AND LEARNING WETHODS - EVALUATION						
TEACHING METHOD	In the classroom.					
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Use of e-class. Communication through face-to-face discussions and e-mails.					
TEACHING ORGANIZATION	Activity	Semester Workload				
	Lectures	52 hours				
	Individual Study	73 hours				
	Course Total (25 hours per ECTS)	125 hours				
STUDENT EVALUATION	Progress-exam (calculation of indefinite and definite integrals) 30% Written final examination 70%.					

TEACHING AND LEARNING METHODS - EVALUATION

RECOMMENDED BIBLIOGRAPHY

 FOURIER ANALYSIS, Kolountzakis M., Papachristodoulos X., Kallipos. (Greek)
APPLIED MATHEMATICS, Mylonas N., Hatzarakis G. Tziola Publications. (Greek)