CC61 - Complex Analysis

GENERAL

GENERAL				
SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CC61	CC61 SEMESTER		F
COURSE TITLE	COMPLEX ANALYSIS			
INDEPENDENT TEACHING ACTIVITIES		. –	WEEKLY TEACHING HOURS	ECTS
	Lectures		5	8
COURSE TYPE	Scientific Field			
PREREQUISITE COURSES	Real Analysis			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

With this course, the students:

- will be familiar with the fundamental notions of topology for the complex plane,
- will be able to understand the definition of the branches of the logarithmic function at the complex plane,
- will be able to calculate by definition the complex derivative of basic functions, as well as use the Cauchy-Riemann conditions,
- will be able to calculate simple complex integrals with both the definition and the Cauchy integral formula,

- will be able to use the theorems of Liouville and analytic continuation expansion, as well as the maximum/minimum principles, to solve exercises,
- will be able to classify specific points of complex functions and calculate Taylor or Laurent expansions at these points,
- will be able to use the Residue theorem to calculate complex integrals, but also real integrals of a specific form.

General Competencies

- Individual work.
- Promotion of free, creative and inductive thinking.

CONTENT OF THE COURSE

Complex plane and operations with complex numbers. Topology of the complex plane (open, closed, connected and simply connected sets, sequences, series). Elementary complex functions. Continuous and holomorphic functions. Cauchy-Riemann equations. Complex integration, theorems and Cauchy's integral formula. Taylor expansion, calculus of integrals. Liouville theorem, maximum/minimum principles. Cauchy's formula on a ring. Isolated singularities. Laurent expansion. Residue Theorem, calculation of curves and real integrals.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Use of e-class. Communication through face-to-face discussions and e-mails.			
TEACHING ORGANIZATION	Activity	Semester Workload		
	Lectures	65 hours		
	Projects	45 hours		
	Individual Study	90 hours		
	Course Total (25 hours per ECTS)	200 hours		
STUDENT EVALUATION	Written final examination 100%.			

RECOMMENDED BIBLIOGRAPHY

- 1. Betsakos D, Introduction to Complex Analysis, Kyriakidi Press (Greek).
- 2. Negrepontis S, Theory of Functions of a Complex Variable, Symmetria Press (Greek).
- 3. Merkourakis S and Chatziafratis T, Introduction to Complex Analysis, Symmetria Press (Greek).
- 4. Marsden J, Hoffman M, Basic Complex Analysis, Symmetria Press (Greek).