CC51 - Algebra II

GENERAL

SCHOOL	SCIENCES			
SCHOOL	SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CC51 SEMESTER		Е	
COURSE TITLE	ALGEBRA II			
INDEPENDENT TEACHING ACTIVITIES		_	WEEKLY TEACHING HOURS	ECTS
	Lectur	res	5	8
COURSE TYPE	Scientific Field			
PREREQUISITE COURSES	Fundamental Notions of Mathematics Algebra I			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

Upon successful completion of the course, the students:

- will know the basic concepts of the Ring-Field Theory and Fields and they will be able to do calculations with ideals and apply isomorphism theorems,
- will understand the notions of prime and maximal ideals, primary decomposition, unique factorization domains and principal ideal domains,

• will understand the notions of Noetherian and Artin rings.

General Competencies

- Individual work.
- Promotion of free, creative and inductive thinking.

CONTENT OF THE COURSE

Rings and fields, integral domains, rings, homomorphisms-isomorphisms. Fields of fractions, quotient rings, polynomial rings. Analysis of polynomials over a field, reduced polynomials. Prime and maximal ideals. Primary decomposition, Unique factorization domains. Principal ideal domains, Euclidean domains. Jacobson radical. Noetherian rings. Artin Rings.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Use of e-class. Communication through face-to-face discussions and e-mails.			
TEACHING				
ORGANIZATION	Activity	Semester Workload		
	Lectures	65 hours		
	Projects	45 hours		
	Individual Study	90 hours		
	Course Total (25 hours per ECTS)	200 hours		
	Optional projects during the whole semester, with presentations. (bonus to the final grading) Written final examination 100%.			

RECOMMENDED BIBLIOGRAPHY

- 1. M.F.Atiyah, I.G.Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969. (English)
- 2. A.Beligiannis, An introduction to Basic Algebra, Publications Kallipos, 2015. (Greek)
- 3. D. Dummit, R. Foote, Abstract Algebra, 3rd edition, Wiley publications, 2004. (English)
- 4. J. B. Fraleigh, Introduction to Algebra, University Publications Crete, 2012. (Greek)
- 5. M. Holz, Repetitorium Algebra: Short Theory and Problems, Publications Symmetria, 2015. (Greek)
- 6. D.Varsos, D.Deriziotis, I.Emmanouil, M.Maliakas and O.Talelli, An introduction to Algebra, 3rd edition, Publications Sophia, 2011. (Greek)