CC31 - Infinitesimal Calculus III

GENERAL

SCHOOL	EXACT SCIENCES			
DEPARTMENT	MATHEMATICS			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CC31	CC31 SEMESTER (С
COURSE TITLE	INFINITESIMAL CALCULUS III			
	INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	ECTS
	Lectures		5	8
COURSE TYPE	Scientific Field			
PREREQUISITE COURSES	Infinitesimal Calculus I-II			
LANGUAGE OF TEACHING AND EXAMINATIONS	Greek/English			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://eclass.uowm.gr/			

LEARNING OUTCOMES

Learning Outcomes

After the successful completion of the course, the students will be able to:

- find the domain of functions of several variables,
- calculate partial derivatives of functions of several variables as well as find their total differential,
- find the extrema of functions of several variables,
- find the limits of functions of several variables,
- check the continuity of functions of several variables,

• make approximations to functions of several variables with the help of the Taylor formula

General Competencies

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Making decisions.
- Production of free, creative and inductive thinking, which is based on mathematical processes.

CONTENT OF THE COURSE

Calculus of many variables. Limits, continuity, partial derivatives and geometric interpretation. Formulas and theorems of partial derivatives. Extrema of functions of many variables. Limits of functions of several variables with constraints. The concept of total differential. Partial higher order derivatives. Distance of points, open and closed sets of \mathbb{R}^n , boundary of a set.

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING METHOD	In the classroom.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Software Mathematica. e-Lectures. Use of e-class. Communication through face-to-face discussions and e-mails.			
TEACHING ORGANIZATION	Activity	Semester Workload		
	Lectures	65 hours		
	Projects	47 hours		
	Individual Study	88 hours		
	Course Total (25 hours per ECTS)	200 hours		
STUDENT EVALUATION	Projects 10%. Progress-Exams 20%. Written final examination 70)%.		

RECOMMENDED BIBLIOGRAPHY

- 1. J. Marsden, A. Tromba, Vector Calculus, Sixth Edition, University Publications of Crete, 2020 (Greek).
- 2. B. Papantoniou, Functions of Several Variables: Theory and Exercises, Publications Gartaganis (Greek).
- 3. R.L. Finney, M.D. Weir, F.R.Giordano, Infinite Calculus, University Publications of Crete, 2004 (Greek).
- 4. Chatziafratis T, Calculus of Functions of Several Variables, Symmetria Press, 2009 (Greek).
- 5. L. Tsitsas, Applied Vector Infinite Calculus, Publications Symmetria, 2003 (Greek).